Measurements of Reactive Nitrogen Oxides

Principal Investigator: Ronald C. Cohen University of California Berkeley

During the 2006 MILAGRO campaign in Mexico City, researchers from UC Berkeley will be making continuous, *in situ* ground-based measurements of reactive nitrogen oxides at the T1 site at Tecamac. We will be operating two thermal dissociation-laser induced fluorescence (TD-LIF) instruments to measure several classes of NO_y.

I. TD-LIF measurements of NO₂, Speroxy nitrates, Salkyl nitrates and HNO₃

One instrument uses LIF to measures NO₂ radicals. A 408 nm diode laser is used to excite NO₂, and the resulting fluorescence is detected by photo-multiplier tubes in single photon counting mode. Certain classes of NO_y thermally dissociate to NO₂ and an accompanying radical at a characteristic temperature. We flow sample air through heated ovens before NO₂ detection, allowing us to also determine total peroxy & peroxy acyl nitrates (Σ PNs), total alkyl and multifunctional alkyl nitrates (Σ ANs), and HNO₃. NO₂ participates in ozone production and tropospheric photochemistry. Σ PNs act as reservoir species, removing NO_x from the atmosphere and enabling transport over great distances, while HNO₃ acts as a sink for NO_x due to rapid deposition to surfaces. The role of Σ ANs in urban air quality is less well understood, though these compounds act are indicative of the particular VOC that contribute to ozone production.

II. TD-LIF measurements of NO_3 and N_2O_5

A second instrument uses LIF at 662nm to measure NO₃ radicals; as N₂O₅ thermally decomposes at a temperature characteristic of its bond energy, this instrument is also used to measure N₂O₅. NO₃ is a key night-time oxidant and, with N₂O₅, is an intermediate species to NO_x removal processes. Nighttime chemistry thus determines the extent to which NO_x accumulates locally and is transported regionally.